

"Gheorghe Asachi" Technical University of lasi

Composite coatings with structured roughness for water repellant applications

Gianina Dodi, Dan Draganescu, Doina Hritcu, Marcel I. Popa

SoFun school "Soft Matter for Functional Materials"

Aim: to develop composite coatings with structured roughness for waterrepellant applications that are cost-effective, facile to manufacture in large scale and highly adherent to glass substrates.

Part of the project: "New composite materials for superhydrophobic coatings with ice-repellant properties"

Project code: PN-II-ID-PCE-4-0433/2012

Contracting agency: CNCS-UEFISCDI

Contract number 74/02.09.2013

http://www.ch.tuiasi.ro/cercetare/IDEI/dhritcu/shidrof/index_en.html

Proposed strategy:

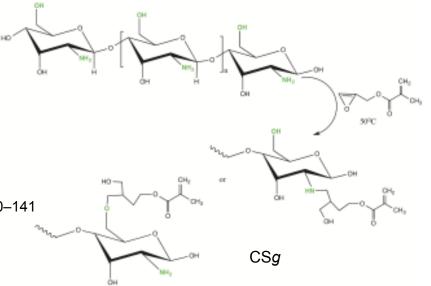
-Hybrid nanoparticle-polymer film preparation to be deposited on glass

surface and allowed to cure by crosslinking:

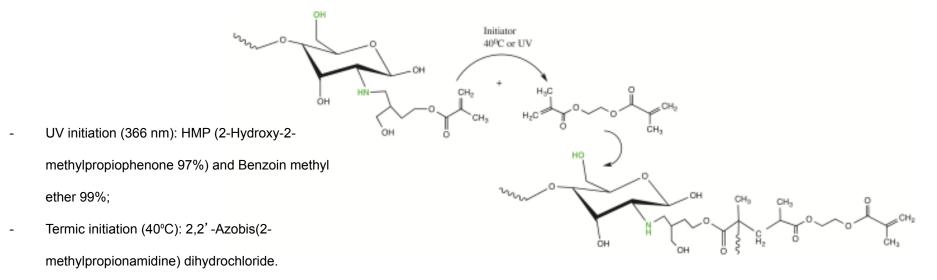
- prepare a polymeric matrix to produce patterned roughness;
- □ prepare iron oxide nanoparticles capable of magnetic self- assembling

during the curing stage; this effect will cause colloidal aggregation and

micro-scale surface protuberances.

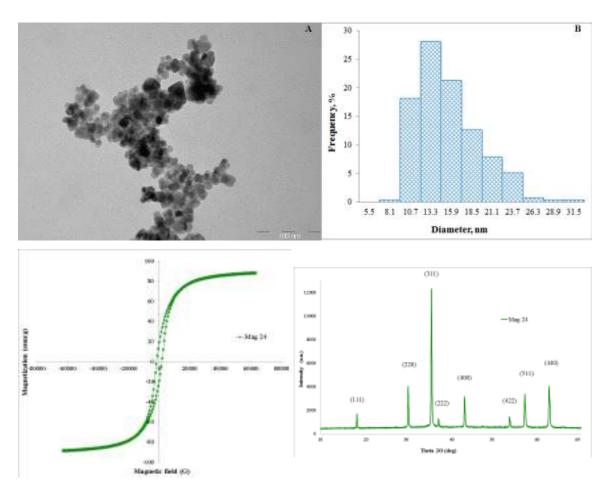

I. Polymeric matrix

1. Chitosan


2. Chitosan surface modification through

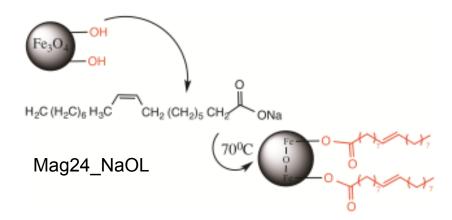
an epoxide ring opening mechanism = vinyl groups:

Reference: G. Dodi et al., Chemical Engineering Journal 203 (2012) 130-141



3. Radical polymerization of modified chitosan (CSg) with ethylene glycol dimethacrylate (EGDMA) using:

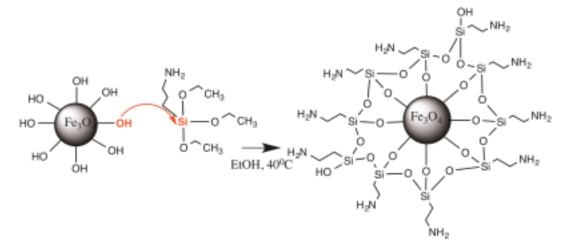
II. Iron oxide nanoparticles: produced by mild oxidation of ferrous ions in alkaline solution


 $12 \text{ Fe}(\text{OH})_2 + \text{NO}_3 = 4 \text{ Fe}_3\text{O}_4 + \text{NH}_3 + 10 \text{ H}_2\text{O} + \text{OH}^-$

Average size: 14 nm/Saturation magnetization: 88.3 emu/g/Highly crystalline magnetite

Reference: G. Dodi et al. / Journal of Magnetism and Magnetic Materials 388 (2015) 49-58

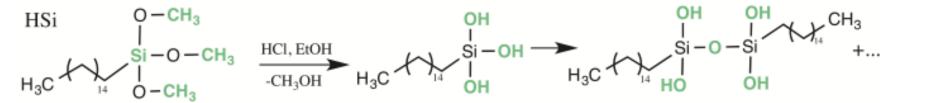
1. Functionalization with various surfactants (hydrophilic-hydrophobic balance)



Reference: G. Dodi et al. / Journal of Magnetism and Magnetic Materials 388 (2015) 49–58

1: Mag24NaOl 2: Mag24 Span 80 3: Mag24 S/T 75/25 4: Mag24 S/T 50/50 5: Mag24 Tween 80

2. Functionalization-Amination



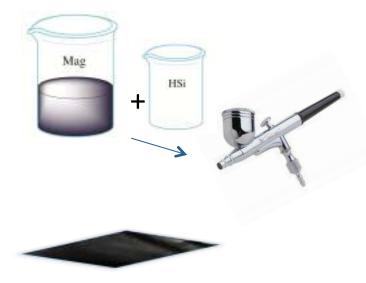
1: Mag24-NH₂_1 2: Mag24-NH₂_2 3: Mag24-NH₂_3

Two-phase partition- degree of functionalization uniformity

III. Hexadecyltrimethoxy silane (HSi):

- promotes interfacial adhesion
- improves the properties of composites.
- 1. Prehydrolyzed/precondensed sol-gel solution preparation:

2. Complexation with polymeric matrix and iron oxide nanoparticles onto the glass slide: hybrid films.


Reference: Spirk et al., Carbohydrate Polymers 93 (2013) 285–290

Film preparation: layer by layer


1. Hybrid matrix deposition

2. Nanoparticles deposition

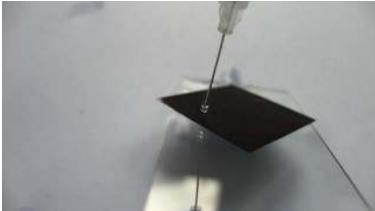
3. Hybrid film fixation

Film composition

Glass slide	Matrix, 1 mL	ΗSi, 250 μL	Magnetite, 1 mL
S1	CS		Mag 24
S2	CS		Mag 24_NaOl
S3	Azo2		Mag24_NH ₂ _2
S4	BMM2		Mag24_NH ₂ _2

Contact Angle and Non-Wetting Properties \square Θ=150°-180° Θ=90°- 150° ⊖<90° 4 Superhydrophobic Hydrophobic Hydrophilic Glass slide **S**1 S2 **S**3 S4 Contact 145° 134.8° 134.7° 159° angle Hysteresis 3.7° 1.1° 2° 0.4° S1, S3 and S4 – 3 μ L droplets; S2 – 20 μ L droplet.

Liquid droplets wetting/non-wetting capability


S2

Conclusions and perspectives:

- Three types of chitosan matrix derivatives were synthesized and successfully evaluated for hybrid film preparation;
- Three types of iron oxide derivatives were synthesized, characterized and successfully used for hybrid film preparation;
- Four types of hybrid materials were successfully deposited onto glass substrates;
- The water contact angle measurements evidenced hydrophobic and superhydrophobic surfaces using chitosan-silane-magnetite derivatives hybrid films.
- Future work: control of layer thickness, surface morphology.

Acknowledgement: This work was supported by a grant of the Romanian Ministry of National Education, CNCS-UEFISCDI, project number PN-II-ID-PCE-2012-4-0433.